CHAPTER

CIRCLES

Syllabus

Tangent to a circle at point of contact.

1. (Prove) The tangent at any point of a circle is perpendicular to the radius through the point of contact.
2. (Prove) The lengths of tangents drawn from an external point to a circle are equal.

Trend Analysis

List of Concepts	2018		2019		2020	
	Delhi	Outside Delhi	Delhi	Outside Delhi	Delhi	Outside Delhi
Tangent to Circle (Theorems)	1 Q (3 M)			1 Q (3 M)	$\begin{aligned} & 1 Q(2 M) \\ & 2 Q(3 M) \end{aligned}$	1 Q (3 M)
Question based on Properties of tangent			2 Q (3 M)		1 Q (1 M)	1 Q (1 M)

Revision Notes

$>$ A tangent to a circle is a line that intersects the circle at one point only.
$>$ The common point of the circle and the tangent is called the point of contact.
$>$ Secant: Two common points (A and B) between line PQ and circle.
$>$ A tangent to a circle is a special case of the secant when the two end points of the corresponding chord are coincide.
$>$ There is no tangent to a circle passing through a point lying inside the circle.
$>$ At any point on the circle there can be one and only one tangent.
$>$ The tangent at any point of a circle is perpendicular to the radius through the point of contact.

$>$ There are exactly two tangents to a circle through a point outside the circle.
$>$ The length of the segment of the tangent from the external point P and the point of contact with the circle is called the length of the tangent.
> The lengths of the tangents drawn from an external point to a circle are equal.
In the figure,

E Know the Facts

$>$ The word 'tangent' comes from the Latin word 'tangere', which means to touch and was introduced by the Danish mathematician Thomas Fincke in 1583.
$>$ The line perpendicular to the tangent and passing through the point of contact, is known as the normal.
$>$ In two concentric circles, the chord of the larger circle, which touches the smaller circle, is bisected at the point of contact.

How is it done on the GREENBOARD?

Q.1. In the given figure if $P R=12 \mathrm{~cm}$,
$O P=5 \mathrm{~cm}$ and
$O Q=4 \mathrm{~cm}$, find $R Q$.

Solution:
Step I: $O P \perp R P \quad$ (as radius is \perp to tangent at point of contact)
In right triangle $O P R$,

$$
O R^{2}=O R^{2}+O R^{2}
$$

$$
O R^{2}=5^{2}+12^{2}
$$

$$
O R^{2}=25+144
$$

$$
O R^{2}=169
$$

$$
O R=\sqrt{169}=13 \mathrm{~cm}
$$

Step II: Similarly, in right triangle OQR,

$$
\begin{aligned}
O R^{2} & =O Q^{2}+Q R^{2} \\
Q R^{2} & =O R^{2}-O Q^{2} \\
Q R^{2} & =13^{2}-4^{2} \\
Q R^{2} & =169-16 \\
Q R^{2} & =153 \\
Q R & =\sqrt{153} \mathrm{~cm} . \\
& =3 \sqrt{17} \mathrm{~cm}
\end{aligned}
$$

Very Short Answer Type Questions

1 mark each
Q.1. If $P Q=28 \mathrm{~cm}$, then find the perimeter of $\triangle P L M$.

A [CBSE SQP, 2020-21]
Sol. \because

$$
P Q=P T
$$

$$
\begin{aligned}
& P L+L Q=P M+M T \\
& P L+L N=P M+M N
\end{aligned}
$$

$$
(L Q=L N, M T=M N)
$$

(Tangents to a circle from a common point) Perimeter ($\triangle P L M$)

$$
\begin{aligned}
& =P L+L M+P M \\
& =P L+L N+M N+P M \\
& =2(P L+L N) \\
& =2(P L+L Q) \\
& =2 \times 28=56 \mathrm{~cm}
\end{aligned}
$$

[CBSE SQP Marking Scheme, 2020-21]
Detailed Solution:
Given,

$$
\begin{aligned}
& P Q=28 \mathrm{~cm} \\
& P Q=P T
\end{aligned}
$$

(Length of tangents from an external point are equal)
i.e.,

$$
P Q=P T=28 \mathrm{~cm}
$$

According to figure,
Let $L Q=x$, then

$$
P L=(28-x) \mathrm{cm}
$$

and let $M T=y$, then

$$
P M=(28-y) \mathrm{cm}
$$

and

$$
L M=L N+N M
$$

$$
\mathrm{p}=x+y
$$

Now, the perimeter of $\triangle P L M=P L+L M+P M$

$$
\begin{aligned}
& =(28-x)+(x+y)+(28-y) \\
& =28+28=56 \mathrm{~cm} . \quad 1 / 2
\end{aligned}
$$

[AI] Q. 2. PQ is a tangent to a circle with centre O at point P. If $\triangle \mathrm{OPQ}$ is an isosceles triangle, then find $\angle \mathrm{OQP}$.

A [CBSE SQP, 2020-21]

Sol.

In $\triangle O P Q$,

$$
\begin{aligned}
& \angle P+\angle Q+\angle O=180^{\circ} \\
& \quad(\angle O=\angle Q \text { isosceles triangle })
\end{aligned}
$$

$$
2 \angle Q+\angle P=180^{\circ}
$$

$$
2 \angle Q+90^{\circ}=180^{\circ}
$$

$$
2 \angle Q=90^{\circ}
$$

$$
\begin{equation*}
\angle Q=45^{\circ} \tag{1}
\end{equation*}
$$

[CBSE SQP Marking Scheme, 2020-21]
Detailed Solution:
As we know that

$$
\angle O P Q=90^{\circ}
$$

(Angle between tangent and radius)
Let $\angle \mathrm{PQO}$ be x°, then

$$
\angle Q O P=x^{\circ}
$$

Since OPQ is an isosceles triangle.
(given)
(OP = OQ)
$1 / 2$
In $\triangle \mathrm{OPQ}$,
$\angle O P Q+\angle P Q O+\angle Q O P=180^{\circ} \quad$ (Property of the sum of angles of a triangle)
$\therefore \quad 90^{\circ}+x^{\circ}+x^{\circ}=180^{\circ}$
$\Rightarrow \quad 2 x^{\circ}=180^{\circ}-90^{\circ}=90^{\circ}$
$\Rightarrow \quad x=\frac{90}{2}=45^{\circ}$.
Hence, $\angle \mathrm{OQP}$ is 45°
$1 / 2$
Q. 3. If two tangents inclined at 60° are drawn to a circle of radius 3 cm , then find length of each tangent.

A [CBSE SQP, 2020-21]
Sol.

In $\triangle \mathrm{PAO}$,

$$
\begin{align*}
\tan 30^{\circ} & =\frac{A O}{P A} \\
\frac{1}{\sqrt{3}} & =\frac{3}{P A} \\
P A & =3 \sqrt{3} \mathrm{~cm} .
\end{align*}
$$

[CBSE SQP Marking Scheme, 2020-21]

Detailed Solution:

$$
P A=P B=?
$$

Angle between tangents $=60^{\circ}$
(Given)
\therefore Tangents are equally inclined to each other.

$1 / 2$
$\Rightarrow \quad \angle O P A=\angle O P B=30^{\circ}$
and

$$
\angle O A P=90^{\circ}
$$

(Angle between tangent and radius)
In $\triangle \mathrm{PAO}$,

$$
\begin{aligned}
\tan 30^{\circ} & =\frac{\text { Perpendicular }}{\text { Base }}=\frac{O A}{A P} \\
\Rightarrow \quad \frac{1}{\sqrt{3}} & =3 \sqrt{3}
\end{aligned}
$$

(Using trigonometric Ratios)
$\Rightarrow \quad A P=3 \sqrt{3}$
Hence, the length of each tangent is $3 \sqrt{3} \mathrm{~cm}$. $1 / 2$
[AI) Q . 4. In the adjoining figure, if $\triangle \mathrm{ABC}$ is circumscribing a circle, then find the length of $B C$.

Sol. $\because \mathrm{AP}$ and AR are tangents to the circle from external point A.

$$
\therefore \quad A P=A R \text { i.e., } A R=4 \mathrm{~cm}
$$

Similarly, PB and BQ are tangents.
$\therefore \quad B P=B Q$ i.e., $B Q=3 \mathrm{~cm} \quad 1 / 2$
Now,

$$
C R=A C-A R=11-4=7 \mathrm{~cm}
$$

Similarly, $C R$ and $C Q$ are tangents.
$\therefore \quad C R=C Q$ i.e., $C Q=7 \mathrm{~cm}$
Now, $\quad B C=B Q+C Q=3+7=10 \mathrm{~cm}$.
Hence, the length of BC is 10 cm .

COMMONLY MADE ERROR

- Some students were not versed with the properties of circle.

ANSWERING TIP

It is necessary for the students to learn all properties of circle.
[AI) Q. 5. In the given figure, find the length of PB.

U [CBSE OD Set-I, 2020]
Sol. Since $A B$ is a tangent at P and $O P$ is radius.
$\therefore \quad \angle A P O=90^{\circ}, A O=5 \mathrm{~cm}$ and $O P=3 \mathrm{~cm}$

In right angled $\triangle \mathrm{OPA}$,

$$
\begin{aligned}
A P^{2}= & A O^{2}-O P^{2} \\
& (\text { By using Pythagoras theorem) } 1 / 2 \\
A P^{2}= & (5)^{2}-(3)^{2}=25-9=16 \\
\Rightarrow \quad A P= & 4 \mathrm{~cm}
\end{aligned}
$$

\because Perpendicular from centre to chord bisect the chord
$\Rightarrow \quad A P=B P=4 \mathrm{~cm}$.
Q. 6. If the radii of two concentric circles are 4 cm and 5 cm , then find the length of each chord of one circle which is tangent to the other circle.
[CBSE SQP, 2020]
Sol. Length of Tangent $=2 \times \sqrt{5^{2}-4^{2}}$

$$
=2 \times 3 \mathrm{~cm}=6 \mathrm{~cm} \quad 1 / 2+1 / 2
$$

[CBSE SQP Marking Scheme, 2020]
Detailed Solution:
In $\triangle \mathrm{OBC}$

In $\triangle \mathrm{OAC}$,

$$
\begin{aligned}
O C^{2}+A C^{2} & =O A^{2} \\
4^{2}+A C^{2} & =5^{2} \\
A C^{2} & =9 \\
A C & =3 \\
\therefore \quad A B & =A C+B C \\
& =3+3 \\
& =6 \mathrm{~cm} .
\end{aligned}
$$

(AI) Q. 7. If the angle between two tangents drawn from an external point ' P ' to a circle of radius ' r ' and centre O is 60°, then find the length of OP .
[CBSE SQP, 2020]
[Foreign Set-I, II, III, 2016]
Sol.

In OBP,

$$
\frac{O B}{O P}=\sin 30^{\circ}
$$

$O P=2 r$
[CBSE Marking Scheme, 2020]
Detailed Solution:

$$
\begin{aligned}
O A & =r \\
P P & =?
\end{aligned}
$$

Angle between tangents $=60^{\circ}$
Tangents are equally inclined to each other
$\Rightarrow \quad \angle O P A=\angle O P B=30^{\circ}$
In $\triangle O P A$,

$$
\begin{align*}
\angle P O A & =180^{\circ}-90^{\circ}-30^{\circ} \\
& =60^{\circ}
\end{align*}
$$

$$
\cos 60^{\circ}=\frac{O A}{O P}
$$

$$
\begin{aligned}
\frac{1}{2} & =\frac{r}{O P} \\
O P & =2 r
\end{aligned}
$$

Q. 8. Two concentric circles of radii a and $b(a>b)$ are given. Find the length of the chord of the larger circle which touches the smaller circle.
[CBSE, Delhi Region, 2019]

Q. 9. In given figure, O is the centre of the circle, $P Q$ is a chord and PT is tangent to the circle at P. Find $\angle \mathrm{TPQ}$.

U [CBSE, OD Set-I, II, IIII, 2017]
Sol.

$$
\begin{align*}
& \angle O P Q=\angle O Q P \quad \text { (radius of circle) } \\
&=\frac{180^{\circ}-70^{\circ}}{2}=55^{\circ} \\
& \therefore \quad 1 / 2 \\
& \angle T P Q
\end{align*}
$$

[CBSE Marking Scheme, 2017]

Detailed Solution:

According to the figure,

$$
\begin{align*}
& O P & =O Q \tag{radii}\\
\therefore & \angle O P Q & =\angle O Q P
\end{align*}
$$

(Isosceles triangle property)
Now, in $\triangle \mathrm{POQ}$,
$\angle O P Q+\angle O Q P+\angle P O Q=180^{\circ}$
(Angle sum property)
$\angle O P Q+\angle O P Q+70^{\circ}=180^{\circ}$

$$
\angle O P Q=180^{\circ}-70^{\circ}=110^{\circ}
$$

$$
\angle O P \widetilde{Q}=55^{\circ}
$$

Since

$$
\angle O P T=90^{\circ} \quad \text { (Angle between }
$$ tangent and radius)

Hence,

$$
\begin{aligned}
\angle T P Q & =90^{\circ}-\angle O P Q \\
& =90^{\circ}-55^{\circ} \\
& =35^{\circ} .
\end{aligned}
$$

$1 / 2$
Q. 10. In the fig. there are two concentric circles with centre O. PRT and PQS are tangents to the inner circle from a point P lying on the outer circle. If $P R=5 \mathrm{~cm}$, find the length of PS.

U [Delhi Comptt. Set-I, II, III, 2017]

Sol. and

$$
\begin{aligned}
P Q & =P R=5 \mathrm{~cm} \\
P Q & =Q S \\
P S & =2 P Q \\
& =2 \times 5=10 \mathrm{~cm} .
\end{aligned}
$$

[CBSE Marking Scheme, 2017]
Q. 11. $P Q$ is a tangent drawn from an external point P to a circle with centre O and QOR is the diameter of the circle. If $\angle P O R=120^{\circ}$, What is the measure of $\angle \mathrm{OPQ}$?

U [Foreign Set-I, II, III, 2016, 2017]

Sol. In $\triangle \mathrm{OQP}$

$$
\angle P O R=\angle O Q P+\angle O P Q
$$

(Exterior angle) $1 / 2$

$$
\begin{aligned}
\therefore \quad \angle O P Q & =\angle P O R-\angle O Q P \\
& =120^{\circ}-90 \\
& =30^{\circ}
\end{aligned}
$$

Q. 12. From an external point P, tangents PA and PB are drawn to a circle with centre O. If $\angle P A B=50^{\circ}$, then find $\angle \mathrm{AOB}$. \quad [Delhi Set-I, II, III, 2016]
Sol.

$$
\text { Here, } \begin{align*}
& \angle O A B=90^{\circ}-50^{\circ} \\
&=40^{\circ} \quad(\because \mathrm{PA} \perp \mathrm{OA}) \\
& \angle O A B=\mathrm{OBA}=40^{\circ} \\
&(\because \mathrm{OA} \text { and } \mathrm{OB} \text { are radii }) \\
& \therefore \angle A O B+40^{\circ}+40^{\circ}=180^{\circ} \\
& \angle A O B=180^{\circ}-80^{\circ}=100^{\circ} \\
& \text { Hence } \angle A O B=100^{\circ} \tag{1}
\end{align*}
$$

Q. 13. In fig., $P A$ and $P B$ are tangents to the circle with centre O such that $\angle A P B=50^{\circ}$. Write the measure of $\angle \mathrm{OAB}$. A [CBSE, Delhi Set I, II, III, 2015]

Sol. Here,

$$
\begin{aligned}
\angle A P B & =50^{\circ} \\
\angle P A B & =\angle P B A=\frac{180^{\circ}-50^{\circ}}{2}=65^{\circ} \\
\angle O A B & =90^{\circ}-\angle P A B \\
& =90^{\circ}-65^{\circ}=25^{\circ}
\end{aligned}
$$

[CBSE Marking Scheme, 2015] 1
Q. 14. In the given figure, $P Q$ and $P R$ are tangents to the circle with centre O such that $\angle Q P R=50^{\circ}$, then find $\angle \mathrm{OQR}$. [CBSE Delhi Set-I, II, III, 2015]

Sol.

$$
\begin{aligned}
& \angle Q P R=\angle 50^{\circ} \quad \text { (Given) } \\
& \angle Q O R+\angle Q P R=180^{\circ} \\
& \quad \quad \text { (Supplementary angles) } \\
& \therefore \quad \angle Q O R=180^{\circ}-50^{\circ}=130^{\circ} \\
& \text { From } \triangle \mathrm{OQR},
\end{aligned}
$$

or,

Short Answer Type Questions-I

$$
\begin{aligned}
\angle O Q R & =\angle O R Q=\frac{180^{\circ}-130^{\circ}}{2} \\
& =\frac{50^{\circ}}{2}=25^{\circ} \quad 1 / 2
\end{aligned}
$$

[CBSE Marking Scheme, 2015]
Q. 1. In the figure, quadrilateral $A B C D$ is circumscribing a circle with centre O and $A D \perp A B$. If radius of incircle is 10 cm , then find the value of x.

A [CBSE SQP, 2020-21]
Sol.

$$
\angle A=\angle O P A=\angle O S A=90^{\circ} \quad 1 / 2
$$

Hence, $\quad \angle S O P=90^{\circ}$
Also, $\quad A P=A S$
Hence, OSAP is a square.

$$
\begin{array}{rlr}
A P & =A S=10 \mathrm{~cm} & 1 / 2 \\
C R & =C Q=27 \mathrm{~cm} \\
B Q & =B C-C Q \\
& =38-27=11 \mathrm{~cm} & \\
B P & =B Q=11 \mathrm{~cm} \\
x & =A B=A P+B P \\
& =10+11=21 \mathrm{~cm} & 1 / 2
\end{array}
$$

[CBSE Marking Scheme, 2020-21]

Detailed Solution:

With O as centre, draw a perpendicular OP on AB .
Now, in quadrilateral APOS,

(Given)
$\angle S A P=90^{\circ}$
(By construction)

$$
\angle A P O=90^{\circ}
$$

and
(Angle between tangent and radius)
Finally $\angle S O P=360^{\circ}-\left(90^{\circ}+90^{\circ}+90^{\circ}\right)=90^{\circ}$

$$
A P=A S
$$

(Tangents from external point A)
$\therefore O S A P$ is a square.

$$
\begin{aligned}
& A P=A S=S O=10 \mathrm{~cm} \quad 1 / 2 \\
& \because \quad C R=C Q \\
& \text { (Tangents from external point } \mathrm{C} \text {) } \\
& \therefore \quad C R=C Q=27 \mathrm{~cm} \\
& \text { But } \quad B C=38 \mathrm{~cm} \quad \text { (Given) } \\
& \therefore \quad B Q=B C-C Q=(38-27) \mathrm{cm} \\
& B Q=11 \mathrm{~cm} \\
& 1 / 2 \\
& B P=B Q \\
& \text { (Tangent from external point B) } \\
& \therefore \quad B P=11 \mathrm{~cm}
\end{aligned}
$$

So, $\quad x=A B=A P+P B$

$$
=(10+11) \mathrm{cm}=21 \mathrm{~cm}
$$

Hence, the value of x is 21 cm .

COMMONLY MADE ERROR

- Some students does not use appropriate figure to solve the question.

ANSWERING TIP

- Carefully read the question and draw the figure as per the required condition.
(AI) Q. 2. In the given figure, two tangents TP and TQ are drawn to circle with centre O from an external point T. Prove that $\angle P T Q=2 \angle O P Q$.

U [CBSE Delhi Set-I, 2020]
[CBSE Delhi Set-I, II, III, 2017]
Sol. Let $\angle O P Q$ be θ, then

$$
\begin{aligned}
& \angle T P Q=90^{\circ}-\theta \quad 1 / 2 \\
& T P=T Q \\
& \angle T Q P=90^{\circ}-\theta \\
& \text { Since, } \\
& \therefore \quad \angle T Q P=90^{\circ}-\theta \\
& \text { (opposite angles of equal sides) }
\end{aligned}
$$

Now, $\angle T P Q+\angle T Q P+\angle P T Q=180^{\circ}$
(Angle sum property of a Triangle)
$\Rightarrow 90^{\circ}-\theta+90^{\circ}-\theta+\angle P T Q=180^{\circ}$
$\Rightarrow \quad \angle P T Q=180^{\circ}-180^{\circ}+2 \theta$
$\Rightarrow \quad \angle P T Q=2 \theta$
Hence,
$\angle P T Q=2 \angle O P Q \quad 1 / 2$
Hence Proved.
[CBSE Marking Scheme, 2020]
Q.3. In Fig, $A B C$ is a triangle in which $\angle B=90^{\circ}, B C=$ 48 cm and $A B=14 \mathrm{~cm}$. A circle is inscribed in the triangle, whose centre is O. Find radius of incircle.

A [CBSE Comptt. Set I, III, III, 2018]
Sol.

$$
A C=\sqrt{A B^{2}+B C^{2}}
$$

$$
=\sqrt{14^{2}+48^{2}}=\sqrt{2500}=50 \mathrm{~cm} \quad 1 / 2
$$

$\angle O Q B=90^{\circ} \Rightarrow O P B Q$ is a square

$$
B Q=r, Q C=48-r=C R
$$

Again,

$$
P B=r
$$

$$
P A=14-r \Rightarrow R A=48-r
$$

$$
A R+R C=A C \Rightarrow 14-r+48-r=50
$$

$$
r=6 \mathrm{~cm}
$$

[CBSE Marking Scheme, 2018]

Detailed Solution:

In $\triangle A B C$,

$$
\begin{aligned}
\angle B & =90^{\circ} \\
A C^{2} & =A B^{2}+B C^{2}
\end{aligned}
$$

(Given)
(By using pythagoras theorem) $=(14)^{2}+(48)^{2}=196+2304$

$$
=2500
$$

$\therefore \quad A C=\sqrt{2500}=50 \mathrm{~cm}$
$1 / 2$
Here, $\angle O Q B=\angle O P B=90^{\circ}$
(Radius is perpendicular to tangent)
\therefore In Quadrilateral OPBQ,

$$
\begin{align*}
\angle P O Q & =360^{\circ}-(O Q B+\angle O P B+\angle P B Q) \\
& =360^{\circ}-\left(90^{\circ}+90^{\circ}+90^{\circ}\right)=90^{\circ}
\end{align*}
$$

So, $O P B Q$ is a square.
Then $O P=Q B=B P=O Q=r$
Thus, $C Q=B C-Q B=48-\mathrm{r}$
But $\quad C Q=C R$
(Tangents from external point C)
$\therefore \quad C R=48-r$
and $\quad A P=A B-B P=14-r \quad 1 / 2$
But $\quad A P=A R$
(Tangents from external point A)
$\therefore \quad A R=14-r$
Now $\quad A C=50 \mathrm{~cm} \quad$ (proved above)
$\Rightarrow \quad A R+R C=50$
$\Rightarrow 14-r+48-r=50$
$\Rightarrow \quad-2 r=50-62=-12$
$\Rightarrow \quad r=6 \mathrm{~cm}$.
$1 / 2$
Q. 4. In the fig, $A B$ and $C D$ are common tangents to two circles of unequal radii. Prove that $A B=C D$.

A [Delhi Comptt. Set-IIII, 2017]
Sol. Construction : Produce $A B$ and $C D$ to meet at P.

Now,
$P A=P C$
and

$$
P B=P D
$$

Tangents to a circle from external point $1 / 2$

$$
\text { Now, } \quad P A-P B=P C-P D
$$ $1 / 2$

$\Rightarrow \quad A B=C D \quad 1 / 2$
[CBSE Marking Scheme, 2017]
Q. 5. In the given figure, $P A$ and $P B$ are tangents to the circle from an external point $P . C D$ is another tangent touching the circle at Q. If $P A=12 \mathrm{~cm}, Q C$ $=D Q=3 \mathrm{~cm}$, then find $P C+P D$.

A [Delhi Comptt. Set-I, II, III, 2017]

Sol. Here,

$$
A C=C Q \quad \begin{aligned}
& \text { external poing to a circle) }
\end{aligned}
$$

$$
\begin{array}{rlrl}
& & P A & =P C+C A=P C+C Q \\
\Rightarrow & & 12 & =P C+3 \quad(\because C A=C Q) \\
\Rightarrow & P C & =12-3=9 \mathrm{~cm}
\end{array}
$$

$$
\begin{align*}
P B & =P D+B D \\
P A & =P D+D Q \\
12-3 & =P D=9 \mathrm{~cm} \\
\therefore \quad P C+P D & =9+9=18 \mathrm{~cm} \tag{1}
\end{align*}
$$

[CBSE Marking Scheme, 2017]
Q. 6. Prove that the tangents drawn at the end points of a chord of a circle make equal angles with the chord.

A [CBSE, OD Set-I, II, III, 2017] [CBSE Delhi Term-II, 2015]
Sol. $\because P M=P N$ (length of tangents are equal)
$\angle 1=\angle 2$ (angles opp. to equal sides are equal)

$$
\begin{aligned}
180^{\circ}-\angle 1 & =180^{\circ}-\angle 2 \\
\angle 3 & =\angle 4
\end{aligned}
$$

[CBSE Marking Scheme, 2015]
Detailed Solution:

Sol.

Q. 7. In given figure, O is the centre of the circle and LN is a diameter. If PQ is a tangent to the circle at K and $\angle K L N=30^{\circ}$, find $\angle P K L$.

U [CBSE OD Comptt. Set-I, II, III, 2017]
Sol. Here,

$$
\begin{aligned}
O K & =O L \\
\angle O K L & =\angle O L K=30^{\circ}
\end{aligned}
$$

(radii)
(Opposite angles of equal sides) $\mathbf{1}$
Since $\begin{aligned} \angle O K P & =90^{\circ} \\ \angle P K L & =90^{\circ}-30^{\circ}=60^{\circ}\end{aligned} \quad$ (Tangent) $\angle P K L=90^{\circ}-30^{\circ}=60^{\circ}$
[CBSE Marking Scheme, 2017]
Q. 8. In Fig., AP and BP are tangents to a circle with centre O , such that $A P=5 \mathrm{~cm}$ and $\angle A P B=60^{\circ}$. Find the length of chord $A B$.

U [CBSE Delhi Set I, II, III, 2016]

Sol.

$P A$	$=P B$	$1 / 2$
or,	$\angle P A B$	$=\angle P B A=60^{\circ}$
$1 / 2$		

$\therefore \triangle P A B$ is an equilateral triangle. $1 / 2$
Hence, $A B=P A=5 \mathrm{~cm}$. $1 / 2$
[CBSE Marking Scheme, 2016]
Q. 9. In the given figure $P Q$ is chord of length 6 cm of the circle of radius 6 cm . TP and TQ are tangents to the circle at points P and Q respectively. Find $\angle P T Q$.

U [CBSE S.A.II, 2016]
Sol. Here, $P Q=6 \mathrm{~cm}, O P=O Q=6 \mathrm{~cm}$

$$
\begin{array}{lr}
\therefore & P Q=O P=O Q \\
\therefore & \angle P O Q=60^{\circ}
\end{array}
$$

(angle of equilateral Δ) $1 / 2$ $\angle O P T=\angle O Q T=90^{\circ}$ (radius \perp tangent)
$\therefore \quad \angle P T Q+90^{\circ}+90^{\circ}+60^{\circ}=360^{\circ}$
(angle sum property) $1 / 2$ $\angle P T Q=120^{\circ}$
Q. 10. A circle touches all the four sides of a quadrilateral ABCD . Prove that $A B+C D=B C+D A$.

A [CBSE OD Set-I, II, III, 2016]

Q. 11. In given figure, $A B$ is the diameter of a circle with center O and AT is a tangent. If $\angle A O Q=58^{\circ}$, find $\angle A T Q$.

U [Board Term-II, 2015 Set-I, II, III]

Sol.

$$
\begin{aligned}
\angle A O Q & =58^{\circ} \\
\angle A B Q & =\frac{1}{2} \angle A O Q \\
& \text { (Angle on the circumference } \\
& \text { of the circle by the same arc) } \\
& =\frac{1}{2} \times 58^{\circ} \\
& =29^{\circ} \\
\angle B A T & =90^{\circ} \\
\angle A T Q & =90^{\circ}-29^{\circ} \\
& =61^{\circ}
\end{aligned} \quad(\because O A \perp A T)
$$

[CBSE Marking Scheme, 2015]
Q. 12. In figure, $P Q$ is a chord of a circle centre O and $P T$ is a tangent. If $\angle Q P T=60^{\circ}$, find $\angle P R Q$.

Sol. Given, $\angle Q P T=60^{\circ}$

$$
\begin{aligned}
& \angle O P Q=\angle O Q P=90^{\circ}-60^{\circ}=30^{\circ} \\
& \angle P O Q=180^{\circ}-\left(30^{\circ}+30^{\circ}\right) \\
&=180^{\circ}-60^{\circ}=120^{\circ} \\
& \angle P R Q=\frac{1}{2} \text { Reflex } \angle P O Q \\
& {\left[\because \text { Reflex } \angle P O Q=360^{\circ}-120^{\circ}=240^{\circ}\right] } \\
&=\frac{1}{2} \times 240^{\circ}=120^{\circ}
\end{aligned}
$$

[CBSE Marking Scheme, 2015] 1
Q. 13. PB is a tangent to the circle with centre O to B . AB is a chord of length 24 cm at a distance of 5 cm from the centre. If the tangent is of length 20 cm , find the length of PO .

A [Delhi Board Term-2, 2015]
Sol. Construction : Join $O B$.
In rt. $\triangle O M B$,

$$
\begin{array}{lll}
& O B^{2}=5^{2}+12^{2}=13^{2} \\
\therefore & O B=13 \mathrm{~cm} \tag{1}\\
\text { Since } & O B \perp \mathrm{~PB} \quad \text { (radius } \perp \text { tangent) }
\end{array}
$$

\therefore In rt. $\triangle O B P$,

$$
\begin{aligned}
O P^{2} & =O B^{2}+B P^{2} \\
& =13^{2}+20^{2} \\
& =569
\end{aligned}
$$

or,
$O P=\sqrt{569}=23.85 \mathrm{~cm} . \quad 1$
[CBSE Marking Scheme, 2015]
Q. 14. From a point T outside a circle of centre O, tangents TP and TQ are drawn to the circle. Prove that $O T$ is the right bisector of line segment $P Q$.

A [CBSE Delhi Term-2, 2015 Set-I, II, III]
Sol. Given: A circle with centre O. Tangents $T P$ and $T Q$ are drawn from a point T outside a circle.

To Prove: $O T$ is the right bisector of line segment $P Q$.
Construction: Join OP and OQ
Proof: $\triangle O P T$ and $\triangle O T Q$

$$
\begin{aligned}
P T & =P Q \quad \text { (Tangents of the circle) } \\
O T & =O T \quad(\text { Common side }) \\
\angle O P T & =\angle O Q R=90^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& \therefore \quad \triangle O P T \cong \triangle O Q T \\
& \text { (R.H.S. Congruency) } \\
& \angle P T O=\angle Q T O \quad \text { (C.P.C.T) } \\
& \triangle P T R \text { and } \triangle T R Q \\
& T P=T Q \quad \text { (Tangents of circle) } \\
& T R=T R \quad \text { (Common) } \\
& \Delta P T R \cong \triangle Q T R \text { (SAS congruency) } \\
& \angle P R T=\angle T R Q \\
& \text { (c.p.c.t.) } \\
& P R=Q R \\
& \angle P R T+\angle T R Q=180^{\circ} \\
& \therefore \quad \angle P R T=\angle T R Q=90^{\circ}
\end{aligned}
$$

Q. 15. In figure, a triangle $A B C$ is drawn to circumscribe a circle of radius 3 cm , such that the segments BD and DC are respectively of lengths 6 cm and 9 cm . If the area of $\triangle \mathrm{ABC}$ is $54 \mathrm{~cm}^{2}$, then find the lengths of sides $A B$ and $A C$.

A [CBSE, OD Set-I, II, III, 2015]
Sol.

Let $A F=A E=x$.

$$
\begin{array}{rlrl}
\therefore & & A B & =6+x, A C=9+x \text { and } B C=151 / 2 \\
& & & \\
& & & \\
& & & \\
& & & \\
& \text { or, } & & \\
& \therefore & x & =54 \\
& & =3 & 1 \\
& \text { and } & A B & =9 \mathrm{~cm}, A C=12 \mathrm{~cm} \\
& B C & =15 \mathrm{~cm} .
\end{array}
$$

[CBSE Marking Scheme, 2015]
Q. 16. In figure, O is the centre of a circle. PT and PQ are tangents to the circle from an external point P. If $\angle T P Q=70^{\circ}$, find $\angle T R Q$.

U [Foreign Set-I, II, III, 2015]
Sol.

Then, $\angle T R Q=\frac{1}{2} \angle T O Q$
(angle at the circumference of the circle by same arc)
$=\frac{1}{2} \times 110^{\circ}=55^{\circ}$.
[CBSE Marking Scheme, 2015]

Short Answer Type Questions-II

3 marks each

Q.1. Prove that the parallelogram circumscribing a circle is a rhombus. A [CBSE Delhi Set-II, 2020]
Sol. Let $A B C D$ be the $\| \mathrm{gm}$.

$$
\therefore \quad A B=C D \text { and } A D=B C \quad \ldots \text { (i) } 1 / 2
$$ $A P+P B+D R+C R=A S+B Q+D S+C Q \quad 1$ or, $\quad A B+C D=A D+B C \quad 1 / 2$ From (i), $\quad 2 A B=2 A D$ or $A B=A D$

or, $A B C D$ is a rhombus.
1
[CBSE Marking Scheme, 2020]

Detailed Solution:
Let $A B C D$ be the parallelogram.
$\therefore A B=C D$ and $A D=B C$
We know that the tangents drawn to a circle from an exterior point are equal in length.
Therefore, $A P=A S, B P=B Q, C R=C Q$ and $D R=$ DS.
Adding the above equations.

$\Rightarrow(A P+B P)+(C R+D R)=(A S+D S)$
$\Rightarrow \quad A B+C D=A D+B C \quad+(B Q+C Q)$
$\Rightarrow \quad A B+C D=A D+B C$
From eq. (i),
or, $\quad \begin{aligned} 2 A B & =2 A D \\ A B & =A D\end{aligned}$
Hence, $A B C D$ is a rhombus.
Hence Proved. $1 / 2$
[AI Q. 2. In given Fig., two circles touch each other at the point C. Prove that the common tangent to the circles at C, bisects the common tangent at P and Q.

A [CBSE Delhi Set-III, 2020]
Sol. Since, and
$P T=T C \quad$ (tangents of circle) $\mathrm{QT}=\mathrm{TC}$ (tangents of circle from extended point) $\mathbf{1}$

So,
Now

$$
P T=Q T
$$

$$
\begin{align*}
\Rightarrow & \tilde{Q} & =P T+P \tilde{T} \\
\Rightarrow & P Q & =2 P T \\
\Rightarrow & \frac{1}{2} P Q & =P T
\end{align*}
$$

Hence, the common tangent to the circle at C, bisects the common tangents at P and Q.
[$[1]$ Q. 3. If a circle touches the side $B C$ of a triangle $A B C$ at P and extended sides $A B$ and $A C$ at Q and R, respectively, prove that $A Q=\frac{1}{2}(B C+C A+A B)$.

A [CBSE OD Set-I, 2020]
Sol. $B C+C A+A B$

$$
=(B P+P C)+(A R-C R)+(A Q-B Q)
$$

$$
=A Q+A R-B Q+B P+P C-C R
$$

\because From the same external point, the tangent segments drawn to a circle are equal.

From the point $B, B Q=B P$
From the point $A, A Q=A R$
From the point $C, C P=C R$
\therefore Perimeter of $\triangle A B C$, i.e.,

$$
\begin{array}{rlrl}
& A B+B C+C A & =2 A Q-B Q+B Q+C R-C R] \\
\Rightarrow & & 2 A Q & =A B+B C+C A \\
\Rightarrow & A Q & =\frac{1}{2}(B C+C A+A B)
\end{array}
$$

Hence proved. 1
Q. 4. In figure $A B$ is a chord of length 8 cm of a circle of radius 5 cm . The tangents to the circle at A and B intersect at P. Find the length of AP.

A [CBSE Delhi Set-I, 2019, Compt. Set I, II, III 2018]
Sol.

Given, $A B=8 \mathrm{~cm} \Rightarrow A M=4 \mathrm{~cm}$.

$$
\therefore \quad O M=\sqrt{O A^{2}-A M^{2}}
$$

(By using Pythagoras theorem)

$$
O M=\sqrt{5^{2}-4^{2}}=3 \mathrm{~cm}
$$

Let $A P=y \mathrm{~cm}, P M=x \mathrm{~cm}$.
$\therefore \triangle O A P$ is a right angle triangle.

$$
\therefore \quad O P^{2}=O A^{2}+A P^{2}
$$

(Again using Pythagoras theorem)

$$
(x+3)^{2}=y^{2}+25
$$

$$
\begin{equation*}
\Rightarrow \quad x^{2}+9+6 x=y^{2}+25 \tag{i}
\end{equation*}
$$

Also, $\quad x^{2}+4^{2}=y^{2}$

$$
\begin{equation*}
x^{2}+6 x+9=x^{2}+16+25 \tag{ii}
\end{equation*}
$$

$$
6 x=32
$$

$$
\Rightarrow \quad x=\frac{32}{6} \text { i.e., } \frac{16}{3} \mathrm{~cm}
$$

$$
y^{2}=x^{2}+16=\frac{256}{9}+16
$$

$$
\begin{equation*}
=\frac{400}{9} \tag{1}
\end{equation*}
$$

$$
y=\frac{20}{3} \mathrm{~cm} \text { or } 6 \frac{2}{3} \mathrm{~cm} .
$$

1
(AI) Q. 5. In the given figure a circle is inscribed in a $\triangle A B C$ having sides $\mathrm{BC}=8 \mathrm{~cm}, \mathrm{AB}=10 \mathrm{~cm}$ and $\mathrm{AC}=12$ cm . Find the length BL, CM and AN.

A [CBSE Delhi Set-II, 2019]
[Delhi Set-I, II, III, 2016]
Sol. Let

$$
B L=x=B N
$$

(Tangent from external point B)
$\therefore \quad C L=8-x=C M$
(Tangent from external point C)
$\because \quad A C=12$
$\Rightarrow \quad A M=4+x=A N$
(Tangent from external point A)
Now $A B=A N+N B=10$
$\Rightarrow x+4+x=10$
$\Rightarrow \quad x=3$
$\therefore B L=3 \mathrm{~cm}, C M=5 \mathrm{~cm}$ and $A N=7 \mathrm{~cm}$.

Q. 6. In Figure PQ and RS are two parallel tangents to a circle with centre O and another tangent $A B$ with point of contact C intersecting PQ at A and RS at B. Prove that $\angle A O B=90^{\circ}$.
[CBSE Delhi Set-I, II, III, 2017]
A [CBSE OD Set-1, 2019]

Sol.

$$
\begin{array}{ll}
\Rightarrow & \angle 1=\angle 2 \\
\text { Similarly } & \angle 4=\angle 3
\end{array}
$$

[SAS] 1
$\Rightarrow \quad \angle 1+\angle 4=\angle 2+\angle 3=\frac{1}{2}\left(180^{\circ}\right)$
$\Rightarrow \quad \angle 2+\angle 3=90^{\circ}$ or $\angle A O B=90^{\circ}$
$1 / 2$

Alternate method :

$$
\begin{array}{lr}
\quad \triangle O A D \cong \triangle A O C & \text { (By SAS) } \tag{BySAS}\\
\Rightarrow & \angle 1=\angle 2 \\
\text { Similarly, } & \angle 4=\angle 3 \\
\text { But } \angle 1+\angle 2+\angle 3+\angle 4=180^{\circ} & (\because P Q|\mid R S)
\end{array}
$$

$$
\Rightarrow \angle 2+\angle 3=\angle 1+\angle 4=\frac{1}{2}\left(180^{\circ}\right)=90^{\circ}
$$

$$
\therefore \text { In } \triangle A O B, \angle A O B=180^{\circ}-(\angle 2+\angle 3)=90^{\circ} \quad 1 / 2
$$

[CBSE Marking Scheme, 2019]
Detailed Solution:

$1 / 2$

In $\triangle D O A$ and $\triangle C O A$

$$
D A=A C
$$

(Tangents drawn from common point)

$$
\angle O D A=\angle O C A=90^{\circ}
$$

(angle between tangent and radius)

$$
O D=O C \text { (radius of circle) }
$$

$\therefore \quad \triangle D O A \cong \triangle C O A$
(By SAS) $1 / 2$
Hence, $\angle 1=\angle 2$ i.e., $\angle D O A=\angle C O A$ (By cpct) ...(i)
Similarly,

$$
\begin{array}{rlrl}
& & \Delta B O C & \cong \Delta B O E \\
& \therefore & \angle 3 & =\angle 4 \text { i.e., } \angle C O B=\angle B O E \quad(\text { By SAS) } 1 / 2 \\
(\text { By cpct }) \tag{ii}
\end{array}
$$

Now, $\angle 1+\angle 2+\angle 3+\angle 4=180^{\circ}$
(angles on a straight line)

$$
\begin{align*}
2 \angle 2+2 \angle 3= & 180^{\circ} \\
& \text { [from eq. (i) \& eq. (ii)] } \\
\angle 2+\angle 3= & 90^{\circ}
\end{align*}
$$

i.e., $\quad \angle A O C+\angle B O C=90^{\circ}$
or $\quad \angle A O B=90^{\circ}$ Hence Proved. 1

COMMONLY MADE ERROR

- Some candidates could not apply the appropriate theorem to find out the unknown angles.

ANSWERING TIP

- Learn circle and related angle properties, cyclic properties, tangent and secant properties thoroughly.
Q. 7. The radii of two concentric circles are 13 cm and 8 cm . AB is a diameter of the bigger circle and BD is a tangent to the smaller circle touching it at D and intersecting the larger circle at P on producing. Find the length of AP.

U [CBSE SQP, 2018-19]
Sol.

$\angle A P B=90^{\circ}$ (angle in semi-circle)
and $\angle O D B=90^{\circ}$ (radius is perpendicular to tangent)

$$
\begin{array}{rlrl}
& & \triangle A B P & \sim \triangle O B D \\
\Rightarrow & & \frac{A B}{O B} & =\frac{A P}{O D} \\
\Rightarrow & \frac{26}{13} & =\frac{A P}{8}
\end{array}
$$

Hence,

$$
\begin{equation*}
A P=16 \mathrm{~cm} \tag{1}
\end{equation*}
$$

[CBSE Marking Scheme, 2018-19]
Q. 8. Prove that the lengths of two tangents drawn from an external point to a circle are equal.

A [CBSE OD Set-I, II, III, 2018]
Sol. Given: AP and BP are tangents of circle having centre O .

To Prove : $\quad A P=B P$
$1 / 2$

Construction : Join $O P, A O$ and $B O$ $1 / 2$

Proof : $\triangle O A P$ and $\triangle O B P$

$$
\begin{array}{rlr}
O A & =O B & \text { (Radius of circle) } \\
O P & =O P & \text { (Common side) } \\
\angle O A P & =\angle O B P=90^{\circ} & \\
& \text { (Radius }- \text { tangent angle) } \\
\triangle O A P & =\triangle O B P \text { (RHS congruency rule) } \\
A P & =B P & \text { (By cpct) } 1
\end{array}
$$

Detailed Solution:

Q. 9. In the given figure, $P A$ and $P B$ are tangents to a circle from an external point P such that $P A=$ 4 cm and $\angle B A C=135^{\circ}$. Find the length of chord $A B$.

Sol. $\quad P A=P B=4 \mathrm{~cm}$

> (Tangents from external point) ½

$$
\angle P A B=180^{\circ}-135^{\circ}=45^{\circ}
$$

(Supplementary angles)

$$
\angle A B P=\angle P A B=45^{\circ}
$$

(Opposite angles of equal sides) $1 / 2$
$\therefore \quad \angle A P B=180^{\circ}-45^{\circ}-45^{\circ}$

$$
=90^{\circ}
$$

So, $\triangle A B P$ is an isosceles right angled triangle.

$$
\begin{array}{ll}
\Rightarrow & A B^{2}=2 A P^{2} \\
\Rightarrow & A B^{2}=32 \\
\text { Hence, } & A B=\sqrt{32}=4 \sqrt{2} \mathrm{~cm}
\end{array}
$$

$$
1
$$

[CBSE Marking Scheme, 2017]
Q. 10. Prove that the tangents drawn at the ends of the diameter of a circle are parallel.

A [CBSE Delhi Set I, II, III, 2017]
Sol. Let $A B$ be the diameter of a given circle and let $C D$ and $E F$ be the tangents drawn to the circle at A and B respectively.

$$
A B \perp C D \text { and } A B \perp E F
$$

$\therefore \quad \angle C A B=90^{\circ}$ and $\angle A B F=90^{\circ} \quad 1 / 2$

$$
\angle C A B=\angle A B F
$$

and $\quad \angle A B E=\angle B A D \quad 1 / 2$ $\angle C A B$ and $\angle A B F$ also $\angle A B E$ and $\angle B A D$ are alternate interior angles.

$$
\therefore \quad C D \| E F \quad \text { Hence proved. }
$$

[CBSE Marking Scheme, 2017]
Q. 11. $A B C$ is a triangle. A circle touches sides $A B$ and $A C$ produced and side $B C$ at X, Y and Z respectively. Show that
$A X=\frac{1}{2}$ perimeter of $\triangle A B C$.
A [Board Term-2, 2016]
Sol. See Q.3. from SATQ-II.

Long Answer Type Questions

Q.1. Prove that opposite sides of a quadrilateral circumscribing a circle subtend supplementary angles at the centre of the circle.

A [CBSE Delhi Region, 2019]
[Foreign Set-I, II, III, 2017]
Sol. Given: A circle with centre O is inscribed in a quadrilateral $A B C D$.
In $\triangle A E O$ and $\triangle A F O$,

$$
\begin{aligned}
& O E=O F \\
& \angle O E A=\angle O F A=90^{\circ} \quad \quad \text { (radii of circle) } \\
& \left(\text { radius is } \perp^{r} \text { to tangent) } 1\right.
\end{aligned}
$$

The point of contact is perpendicular to the tangent.

$$
O A=O A \quad(\text { common side })
$$

$$
\triangle A E O \cong \triangle A F O
$$

(R.H.S. congruency)
$\angle 7=\angle 8 \quad$ (By cpct) ...(i) 1
Similarly,

$$
\begin{align*}
& \angle 1=\angle 2 \tag{ii}\\
& \angle 3=\angle 4 \tag{iii}\\
& \angle 5=\angle 6 \tag{iv}
\end{align*}
$$

$\angle 1+\angle 2+\angle 3+\angle 4+\angle 5+\angle 6+\angle 7+\angle 8=360^{\circ} 1$
(angle around a point is 360°)

$$
\begin{aligned}
2 \angle 1+2 \angle 8+2 \angle 4+2 \angle 5 & =360^{\circ} \\
\angle 1+\angle 8+\angle 4+\angle 5 & =180^{\circ} \\
(\angle 1+\angle 8)+(\angle 4+\angle 5) & =180^{\circ} \\
\angle A O B+\angle C O D & =180^{\circ}
\end{aligned}
$$

Hence Proved.

Alternate Method:
Topper Answer, 2018

Sol. Te prove: opposite sides of a

Q. 2. a, b and c are the sides of a right triangle, where c is the hypotenuse. A circle, of radius r, touches the sides of the triangle. Prove that $r=\frac{a+b-c}{2}$.

A [CBSE SA-2, 2016]
Sol.

Let circle touches $C B$ at $M, C A$ at N and $A B$ at P. Now $O M \perp C B$ and $O N \perp A C$ (radius \perp tangent)

$$
\begin{aligned}
& O M=O N \\
& C M=C N
\end{aligned}
$$

(radii) (Tangents) 1
$\therefore O M C N$ is a square.
Let $O M=r=C M=C N$

$$
A N=A P, C N=C M \text { and } B M=B P
$$

(tangent from external point)

$$
\begin{array}{rlrl}
A N & =A P \\
\Rightarrow & & A B-B P \tag{1}\\
& =A B-B P \\
b-r & =c-B M \\
b-r & =c-(a-r) \\
b-r & =c-a+r \\
\therefore & & 2 r & =a+b-c \\
& & r & =\frac{a+b-c}{2} .
\end{array}
$$

Hence Proved.

[CBSE Marking Scheme, 2016]
Q. 3. In Fig. O is the centre of a circle of radius 5 cm . T is a point such that $O T=13 \mathrm{~cm}$ and OT intersects circle at E. If $A B$ is a tangent to the circle at E, find the length of $A B$, where TP and TQ are two tangents to the circle.

U [CBSE Delhi Set I, II, III, 2016]

Sol.

$$
P T=\sqrt{169-25}=12 \mathrm{~cm}
$$

and

Let

$$
\begin{aligned}
T E & =\mathrm{OT}-\mathrm{OE}=13-5 \\
& =8 \mathrm{~cm} \quad 1 / 2+1 / 2
\end{aligned}
$$

$$
P A=A E=x . \quad \text { (Tangents) }
$$

Then,

$$
T A^{2}=T E^{2}+E A^{2}
$$

or,

$$
(12-x)^{2}=8^{2}+x^{2}
$$

$$
1
$$

$$
24 x=80
$$

or,
$x=3.3 \mathrm{~cm}$. (Approx.)
1
Thus

$$
A B=2 \times x=2 \times 3 \cdot 3
$$

$$
\begin{equation*}
=6.6 \mathrm{~cm} . \text { (Approx.) } \tag{1}
\end{equation*}
$$

[CBSE Marking Scheme, 2016]
Q. 4. Prove that tangent drawn at any point of a circle is perpendicular to the radius through the point of contact.
[CBSE OD Set II, 2016]

E

Topper Answer, 2016

Sol. $\frac{\text { Given - a circle }(10,0 P) \text { and tangent }}{\text { at } P}$

To prove - OP $\perp P Q$
Constr - Extend $O R$ to θ, at : $A B$

Q. 5. In the given figure, O is the centre of the circle. Determine $\angle A P C$, if DA and DC are tangents and $\angle A D C=50^{\circ}$.

A [Board Term-2, 2015]
Sol.

Given $D A$ and $D C$ are tangents from point D to a circle with centre O.

$$
\angle 1=\angle 2=90^{\circ}
$$

(radius \perp tangent) 1

$$
\begin{array}{rlrl}
& & \angle 1+\angle 2+\angle 3+\angle 4 & =360^{\circ} \\
\text { or, } & 90^{\circ}+90^{\circ}+50^{\circ}+\angle 4 & =360^{\circ} \\
\text { or, } & & 1 \\
\therefore & & \text { Reflex } \angle 4 & =130^{\circ} \\
& \angle A P C & =360^{\circ}-130^{\circ}=230^{\circ} \\
& & 1 \\
& & \text { (angle subtended at centre) } \\
& \angle A P C & =\frac{1}{2} \times 230^{\circ}=115^{\circ}
\end{array}
$$

[CBSE Marking Scheme, 2015]

Note: Attempt any four sub parts from each question. Each sub part carries 1 mark
[AI] Q. 1. There is a circular filed of radius 5 m . Kanabh, Chikoo and Shubhi are playing with ball, in which Kanabh and Chikoo are standing on the boundary of the circle. The distance between Kanabh and Chikoo is 8 m . From Shubhi point S, two tangents are drawn as shown in the figure. Give the answer of the following questions.
$\mathrm{C}+\mathrm{AE}$

(i) What is the relation between the lengths of SK and SC ?
(a) $\mathrm{SK} \neq \mathrm{SC}$
(b) $\mathrm{SK}=\mathrm{SC}$
(c) $\mathrm{SK}>\mathrm{SC}$
(d) $\mathrm{SK}<\mathrm{SC}$.

Sol. Correct Option: (b)
Explanation: We know that the lengths of tangents drawn from an external point to a circle are equal. So SK and SC are tangents to a circle with centre O.

$$
\therefore \quad S K=S C
$$

(ii) The length (distance) of OR is:
(a) 3 m
(b) 4 m
(c) 5 m
(d) 6 m .

Sol. Correct Option: (a)
Explanation: In question 1, we have proved

$$
S K=S C
$$

Then $\Delta S K C$ is an isosceles triangle and SO is the angle bisector of $\angle \mathrm{KSC}$. So, OS $\perp \mathrm{KC}$.
\therefore OS bisects $K C$, gives $K R=R C=4 \mathrm{~cm}$.
Now,

$$
\mathrm{OR}=\sqrt{O K^{2}-K R^{2}}
$$

(By using Pythagoras theorem)
$=\sqrt{5^{2}-4^{2}}=\sqrt{25-16}$

$$
=\sqrt{25-16}
$$

$$
=\sqrt{9}
$$

$$
\begin{equation*}
=3 \mathrm{~m} \tag{1}
\end{equation*}
$$

(iii) The sum of angles SKR and OKR is:
(a) 45°
(b) 30°
(c) 90°
(d) none of these

Sol. Correct Option: (c)

Explanation:

$$
\begin{aligned}
\angle S K R+\angle O K R & =\angle O K R \\
& =90^{\circ}\left(\text { Radius is } \perp^{r} \text { to tangent }\right) 1
\end{aligned}
$$

(iv) The distance between Kanabh and Shubhi is:
(a) $\frac{10}{3} \mathrm{~m}$
(b) $\frac{13}{3} \mathrm{~m}$
(c) $\frac{16}{3} \mathrm{~m}$
(d) $\frac{20}{3} \mathrm{~m}$

Sol. Correct Option: (d)
Explanation: $\triangle S K R$ and $\triangle R K O$,

$$
\begin{aligned}
& \angle R K O=\angle K S R \\
& \text { and } \quad \angle S R K=\angle O R K \\
& \therefore \quad \triangle K S R \sim \triangle O K R \quad \text { (By AA Similarity) } \\
& \text { Then } \quad \frac{S K}{K O}=\frac{R K}{R O} \\
& \Rightarrow \quad \frac{S K}{5}=\frac{4}{3} \\
& \text { (} \mathrm{RO}=3 \mathrm{~m} \text {, proved in Q.2.) } \\
& \Rightarrow \quad 3 S K=20 \\
& \Rightarrow \quad S K=\frac{20}{3}
\end{aligned}
$$

Hence, the distance between Kanabh and Shubhi is $\frac{20}{3} \mathrm{~m}$.
(v) What is the mathematical concept related to this question?
(a) Constructions
(b) Area
(c) Circle
(d) none of these

Sol. Correct Option: (c)
Explanation: The mathematical concept (Circle) is related to this question.

1
(AI) Q. 2. ABCD is a playground. Inside the playground a circular track is present such that it touches $A B$ at point $P, B C$ at $Q, C D$ at R and $D A$ at S.

See the above figure and give answer of the following questions:
$\mathrm{C}+\mathrm{AE}$
(i) If $D R=5 \mathrm{~m}$, then DS is equal to:
(a) 6 m
(b) 11 m
(c) 5 m
(d) 18 m

Sol. Correct Option: (c)

Explanation:

$$
\begin{aligned}
& \begin{array}{ll}
& D R=5 \mathrm{~m} \text { (given) } \\
\therefore \quad D R & =D S
\end{array} \\
& \text { (Length of tangents are equal) } \\
& \text { i.e., } \quad D S=5 \mathrm{~m} \text {. }
\end{aligned}
$$

(ii) The length of $A S$ is:
(a) 18 m
(b) 13 m
(c) 14 m
(d) 12 m

Sol. Correct Option: (a)
Explanation: We have $A D=23 \mathrm{~m}$.

$$
\begin{array}{lll}
\text { and } & D S & =5 \mathrm{~m} \\
\therefore & A S & =A D-D S \\
& & =(23-5) \mathrm{m}=18 \mathrm{~m} .
\end{array}
$$

(iii) The length of PB is:
(a) 12 m
(b) 11 m
(c) 13 m
(d) 20 m

Sol. Correct Option: (b)
Explanation: We have,

	$A B=29 \mathrm{~m}$	
But	$A S=\mathrm{AP}$	(lengths of tangents are equal)
and	$A S=18 \mathrm{~m}$	(Proved in Q.2)
\therefore	$A P=18 \mathrm{~m}$	
Now,	$\begin{aligned} P B & =A B-A P \\ & =(29-18) \mathrm{m} \end{aligned}$	
	$=11 \mathrm{~m}$.	

(iv) What is the angle of $O Q B$?
(a) 60°
(b) 30°
(c) 45°
(d) 90°

Sol. Correct Option: (d)
Explanation: $\angle O Q B=90^{\circ}$ (Radius is \perp^{r} to tangent)
(v) What is the diameter of given circle?
(a) 22 m
(b) 33 m
(c) 20 m
(d) 30 m

Sol. Correct Option: (a)
Explanation:

\because	$P B$	$=11 \mathrm{~m}$	(proved in Q.3)		
But		$P B$	$=B Q$	\quad	(lengths of
---:	:---				

Hence, diameter $=2 r=2 \times 11=22 \mathrm{~m}$.
1
Q.3. A Ferris wheel (or a big wheel in the United Kingdom) is an amusement ride consisting of a rotating upright wheel with multiple passengercarrying components (commonly referred to as passenger cars, cabins, tubs, capsules, gondolas, or pods) attached to the rim in such a way that as the wheel turns, they are kept upright, usually by gravity.
After taking a ride in Ferris wheel, Aarti came out from the crowd and was observing her friends who were enjoying the ride. She was curious about the different angles and measures that the wheel will form. She forms the figure as given below.

(i) In the given figure find $\angle \mathrm{ROQ}$.
(a) 60
(b) 100
(c) 150
(d) 90

Sol. Correct option: (c).
(ii) Find $\angle R Q P$.
(a) 75
(b) 60
(c) 30
(d) 90

Sol. Correct option: (a).
(iii) Find $\angle \mathrm{RSQ}$.
(a) 60
(b) 75
(c) 100
(d) 30

Sol. Correct option: (b).
(iv) Find $\angle \mathrm{ORP}$.
(a) 90
(b) 70
(c) 100
(d) 60

Sol. Correct option: (a).
Explanation: $\quad \angle O R P=90^{\circ}$
Because, radius of circle is perpendicular to tangent.
Q.4. Varun has been selected by his School to design logo for Sports Day T-shirts for students and staff. The logo design is as given in the figure and he is working on the fonts and different colours according to the theme. In given figure, a circle with centre O is inscribed in a $\triangle A B C$, such that it touches the sides $A B, B C$ and $C A$ at points D, E and F respectively. The lengths of sides $A B, B C$ and CA are $12 \mathrm{~cm}, 8 \mathrm{~cm}$ and 10 cm respectively.

(i) Find the length of AD.
(a) 7
(c) 5
(b) 8
(d) 9

Sol. Correct option: (a).
(ii) Find the Length of BE.
(a) 8
(b) 5
(c) 2
(d) 9

Sol. Correct option: (b).
(iii) Find the length of CF.
(a) 9
(b) 5
(c) 2
(d) 3

Sol. Correct option: (d).
(iv) If radius of the circle is 4 cm , find the area of \triangle OAB.
(a) 20
(b) 36
(c) 24
(d) 48

Sol. Correct option: (c).
(v) Find area of $\triangle \mathrm{ABC}$
(a) 50
(b) 60
(c) 100
(d) 90

Sol. Correct option: (b).

